

AC CURRENT SWITCHES

RIBXG Series

Enclosed Self-Powered Split Core AC Sensors

SPECIFICATIONS

Operating Temperature: -30 to 140° F

Humidity Range: 5 to 95% (noncondensing)

Max Sense Voltage: 600 Vac

Approvals: UL Listed, UL916, UL864, C-UL,

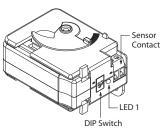
California State Fire Marshal, CE, RoHS Mounting/Installation: Removable mounting tab provided. The

wire clamp locks against the wire being

monitored, securing the unit in place. Sensor Contact Status: Current below threshold: Open

Current above threshold: Closed

Sensor Contact:


- Solid State Contact
- When sensor contact is off (open), leakage
- <30 uA @ 30Vac/dc
- When sensor contact is on (closed), voltage drop

Wht/Yel

Wht/Yel

< .3 Vac/dc @ .1 Amp < 1.6 Vac/dc @ .4 Amp

SELF-CALIBRATING AC SWITCHES (Models with -SCAL Suffix)

-SCAL LED TABLE							
LED Off	No Current						
Two Winks	Current Below Range						
Three Winks	Current In Range						
Four Winks	Current Above Range						
Continuous Winks	Calibration in Progress						

The SCAL unit begins the 30 second self-calibration process the first time current is applied in the operating range. The threshold is then set. Subsequent calibrations may be performed by moving SW1 to the position opposite of its current position with or without current applied (hands can be safely away from live voltage). Once current begins flowing, or if it already is, the calibration process will begin. At the end of the 30 seconds, amperage will be read and set as the threshold. $SW2 in the ON position provides a 15\% \,(+/-3\%) \, differential. \, In the OFF position, it provides a 25\% \,(+/-3\%) \, differential. \, SW2 in the OFF position, it provides a 25\% \,(+/-3\%) \, differential. \, SW2 in the OFF position, it provides a 25\% \,(+/-3\%) \, differential. \, SW2 in the OFF position, it provides a 25\% \,(+/-3\%) \, differential. \, SW2 in the OFF position, it provides a 25\% \,(+/-3\%) \, differential. \, SW2 in the OFF position, it provides a 25\% \,(+/-3\%) \, differential. \, SW2 in the OFF position, it provides a 25\% \,(+/-3\%) \, differential. \, SW2 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,(+/-3\%) \, differential. \, SW3 in the OFF position provides a 25\% \,($ can be selected at anytime and does not affect the threshold setting. Current in-range closes the sensor contact. Current in the contact of the contact ofabove or below range opens the sensor contact.

Example: With a current of 10 amps set as the threshold and a 15% differential, sensor contact will be closed between 8.5 amps and 11.5 amps and open outside of this range. A small amount of hysteresis is provided to prevent dithering near the differential limits.

		CULUSTED
1		CE
RIBXGA-SCAL	-	RoHS
	RIBXGTA-SCAL	Made in USA Meets "Buy American"
		of ARRA 2009

RIBXG SERIES SELECTION GUIDE												
Model#	Sensing Range	Type	Threshold	Sensor Contact Type	Switching Voltage Range	Maximum Switching Current	Sensor Contact Termination	LED 1	LED 2			
RIBXGF	.35-150 Amp	Split Core	Fixed, .35 Amp	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Wht/Yel 16" 18 AWG Wire Leads					
RIBXGFL*	.75-150 Amp	Split Core	Fixed, .75 Amp	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Wht/Yel 16" 18 AWG Wire Leads	Over Trip Point				
RIBXGTF	.35-150 Amp	Split Core	Fixed, .35 Amp	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Terminal Strip, Accepts #14-22 AWG Wire					
RIBXGTFL*	.75-150 Amp	Split Core	Fixed, .75 Amp	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Terminal Strip, Accepts #14-22 AWG Wire	Over Trip Point				
RIBXGA	.75-150 Amp	Split Core	Adjustable	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Wht/Yel 16" 18 AWG Wire Leads	Over Trip Point	Under Trip Point			
RIBXGTA	.75-150 Amp	Split Core	Adjustable	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Terminal Strip, Accepts #14-22 AWG Wire	Over Trip Point	Under Trip Point			
RIBXGA-SCAL	3-150 Amp	Split Core	Self-Cal.	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Wht/Yel 16" 18 AWG Wire Leads	See -SCAL Table				
RIBXGTA-SCAL	3-150 Amp	Split Core	Self-Cal.	Solid State Switch SPST	30 Vac/dc	.4 Amps Max	Terminal Strip, Accepts #14-22 AWG Wire	See -SCAL Table				