Solid Core and Split Core Adjustable Current "Status" Switches
 CSS-O, CSS-C; CSP-O, CSP-C

INSTALLATION INSTRUCTIONS

SAFETY

A WARNING

For CSS-O,C ensure that all power sources are disconnected and locked out before installation as severe injury or death may result from electrical shock due to contact with high voltage wires.

CAUTION

This product is not intended to be used for life or safety applications.

CAUTION

This product is not intended for use in any hazardous or classified locations.

INSTALLATION

Make sure that all installations are in compliance with all national and local electrical codes. Only qualified individuals that are familiar with codes, standards and proper safety procedures for high voltage installations should attempt installation. The current switches will not require external power, since the power for the current switch is induced from the conductor being monitored.

A WARNING

Never rely on the LEDs to determine whether power is present at the current switch. The red LED will indicate whether the current is above the adjustable trip point. The green LED will indicate whether the current is below the adjustable trip point.

IMPORTANT

The current switch should be used on insulated conductors only!

The current switch may be mounted in any position using the (2) $\# 8 \times 3 / 4 \mathrm{in}.(19 \mathrm{~mm})$ Tek screws and the mounting holes in the base or snapped directly on to the 1-3/8 in. $(35 \mathrm{~mm})$ DIN rail (See Figures 1 and 2). Leave a minimum distance of 1 in . $(25 \mathrm{~mm})$ between the current switch and any other magnetic devices, such as contactors and transformers.

For applications in which the normal operating current is below the 0.8/2.0 Amps trip point (See Fig. 3), the conductor being monitored may be looped through the sensor 6/12 times giving you a total operating current of $6 / 12$ times the original current.

Example:

A small fan operating at 0.2 Amps can be wrapped through the sensor 6 times to give you a total operating current of 1.2 Amps flowing through the CSS-O-A300-001. Another option is to use CSS-O-A200-001.
A small fan operating at 0.2 Amps can be wrapped through the sensor 16 times to give you a total operating current of 3.2 Amps flowing through the CSP-O-A300-001. Another option is to use the CSP-O-A200-001.

Fig. 1. Sensor placed on DIN rail

Fig. 2. Sensor removed from DIN rail

Fig. 3. Wires through sensors

A WARNING

The secondary of the 5 Amps Current Transformer must be shorted together before the power may be turned on to the monitored device.

For applications in which the normal operating current is greater than 250 Amps or for conductor diameters larger that $3 / 4 \mathrm{in}$. $(19 \mathrm{~mm})$ in diameter, and external 5 Amps Current Transformer (C.T.) must be used as shown in Fig. 4.

EXAMPLE: FOR CURRENTS UP TO 600 AMPS, USE A 600:5 RATIO C.T. AS SHOWN.

M25295A
Fig. 4. Current transformer

Latch Operation

Pressing down on the two (2) side tabs and swinging the cover open opens the split core current switch as shown in Fig. 5. Lifting up the latch with a flat-tip screwdriver as shown in Fig. 6 can also open the unit. Press down firmly on the cover to close the current switch. An audible "click" will be heard as the tab slides over the tongue on the base.

4 CAUTION

Mating surfaces of the magnetic core are exposed when the sensor is open. Silicone grease, present on the cores to prevent rust, can capture grit and dirt if care is not exercised. Operation can be impaired if anything prevents good contact between pole pieces. Visually check the mating parts of the core before closing the current sensor.

Fig. 6. Opening with a screwdriver

Wiring

Honeywell recommends the use of a 2 conductor 16 to 22 AWG (1.3 to $0.3 \mathrm{~mm}^{2}$) shielded cable or twisted wire, copper wire only, for all current switch output applications. A maximum wire length of less than 98.4 feet (30 meters) should be used between the current switches and the Building Management System or controller.

NOTE: When using a shielded cable, be sure to connect only (1) end of the shield to ground at the controller. Connecting both ends of the shield to the ground may cause a ground loop.

When removing the shield from the sensor end, make sure to properly trim the shield so as to prevent any chance of shorting. The current switch output terminals represent a solid-state switch for controlling AC and DC loads and is not polarity sensitive. The recommended torque to be used on the terminal block connections is 5.93 in-lbs. (0.67 Nm). The aperture (hole) size of the current switch is $3 / 4 \mathrm{in}$. (19 mm) and will accept a maximum cable diameter of 350 MCM (17.3 mm). See Fig. 7 for use as a digital input to a building management system and Fig. 8 for use as a pilot relay application.

OPERATING SPECIFICATIONS

Max Sensing Current Voltage: 600 Vac

Table 1. Specifications by Product Number.

Product Number	Core Type	Normal Position	Adjustable Trip Point	Output Switch Rating	Max. Current Cont.	Max. Current for 6 secs.	Max. Current for $\mathbf{1}$ sec.
CSS-O-A300-001	Solid	N.O.	$1.0-250 \mathrm{Amps}$	$0.30 \mathrm{Amps} @$ $200 \mathrm{Vac} / \mathrm{Vdc}$	250 Amps	500 Amps	$1,000 \mathrm{Amps}$
CSS-O-A200-001	Solid	N.O.	$0.50-250 \mathrm{Amps}$	$0.30 \mathrm{Amps} @$ $200 \mathrm{Vac} / \mathrm{Vdc}$	250 Amps	500 Amps	$1,000 \mathrm{Amps}$
CSS-C-A300-001	Solid	N.C.	$1.0-250 \mathrm{Amps}$	$0.15 \mathrm{Amps} @$ $300 \mathrm{Vac} / \mathrm{Vdc}$	250 Amps	500 Amps	$1,000 \mathrm{Amps}$
CSP-O-A300-001	Split	N.O.	$3.0-200 \mathrm{Amps}$	$0.30 \mathrm{Amps} @$ $200 \mathrm{Vac} / \mathrm{Vdc}$	200 Amps	400 Amps	800 Amps
CSP-O-A200-001	Split	N.O.	$2.0-200 \mathrm{Amps}$	$0.30 \mathrm{Amps} @$ $200 \mathrm{Vac} / \mathrm{Vdc}$	200 Amps	400 Amps	800 Amps
CSP-C-A300-001	Split	N.C.	$3.0-250 \mathrm{Amps}$	$0.15 \mathrm{Amps} @$ $300 \mathrm{Vac} / \mathrm{Vdc}$	250 Amps	500 Amps	$1,000 \mathrm{Amps}$
CSP-C-A200-001	Split	N.C.	$2.5-250 \mathrm{Amps}$	$0.15 \mathrm{Amps} @$ $300 \mathrm{Vac} / \mathrm{Vdc}$	250 Amps	500 Amps	$1,000 \mathrm{Amps}$

Calibration of Adjustable Trip Point

The adjustable current switch has an operating range of 0-200 Amps or 0-250 Amps. Do not exceed! The adjustable current switch comes with its fifteen-turn adjustable potentiometer set counter-clockwise \qquad to its maximum position. The adjustable current switch can monitor Under load, Normal load and Overload conditions, depending on how it's set. The procedure below is for Normal load condition for part numbers CSS-O-A300-001 and CSS-O-A200-001.

Normal loads

With power on and the adjustable current switch on the proper range, turn the fifteen-turn adjustment potentiometer clockwise \square until the red LED turns on and stop immediately. The adjustment switch is now tripped. The adjustable current switch Hysteresis (Dead Band) is 10% of the trip point typically.

TROUBLESHOOTING

Problem	Solution
Red LED is on but the current switch didn't activate.	Disconnect the wires from the current switch output. Measure the resistance across the contacts with an Ohmmeter. See Table 2 below for resistance readings for a good unit.
Red LED didn't turn on and the current switch didn't activate	Verify that the conductor you are monitoring is above the adjustable trip point. If the sensor is monitoring less than the adjustable trip point, looping the wire may be required. See Fig. 3.
Sensor doesn't switch at all, regardless of current level.	Adjustment potentiometer is probably set to its maximum or minimum position. Turn the potentiometer clockwise all the way and verify if the LED switches from red to green.

Table 2. Resistance Readings For Good Unit.

Product Number	Resistance if switch is open	Resistance if switch is closed
CSS-O-A300-001	Greater than 1 Meg ohms	Approximately 2 ohms
CSS-O-A200-001	Greater than 1 Meg ohms	Approximately 2 ohms
CSS-C-A300-001	Greater than 1 Meg ohms	Approximately 12 ohms
CSP-O-A300-001	Greater than 1 Meg ohms	Approximately 2 ohms
CSP-O-A200-001	Greater than 1 Meg ohms	Approximately 2 ohms
CSP-C-A300-001	Greater than 1 Meg ohms	Approximately 12 ohms
CSP-C-A200-001	Greater than 1 Meg ohms	Approximately 12 ohms

By using this Honeywell literature, you agree that Honeywell will have no liability for any damages arising out of your use or modification to, the literature. You will defend and indemnify Honeywell, its affiliates and subsidiaries, from and against any liability, cost, or damages, including attorneys' fees, arising out of, or resulting from, any modification to the literature by you.

Automation and Control Solutions

Honeywell International Inc.
1985 Douglas Drive North
Golden Valley, MN 55422
customer.honeywell.com

Honeywell Limited-Honeywell Limitée
35 Dynamic Drive
Toronto, Ontario M1V 4Z9

Printed in U.S.A. on recycled

